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* most booster engines operate at supercritical conditions
* current understanding not sufficient to support design optimization
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PmENNSTATE Flow Diagram of RD-170 Engine

He pressurization Filter ¢
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Fuel Oxid‘izer
; inlet
inlet He He % To oxygen tank

‘# Filter Oxidizer booster

Heat exchanger turbopump
He supply

Main :
Fuel booster 1 of 2 preburners  turbine ,
turbopump < A N
4 - S— \ —

L

Nozzle -
7 , ‘
Start fuel Regulator  Oxidizer 7 < 4&
tanks (6) pump Main Fuel Bﬂ_' Command pressure
fuel pump  kick pump  Throttles determination module

— Energia booster and Zenit first stage, up to 10 flights.
— LOX/kerosene, one main two boost turbopumps
— 806 ton thrust (vacuum), 337 seconds of I, O/F ratio of 2.63

sp?
— Chamber pressure 250 bar, turbine inlet pressure 519 bar and temperature 772 K
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® Tamura et al. / NAL (Japan)
* Mayer, Oschwald, Haidn, etc. / DLR (Germany)
* Habiballah,Vingert, Grisch, etc. / ONERA (France)
Candel et al. / Ecole Central Paris (France)
* Woodward, Pal, Santoro, etc. / Penn State (USA)

Talley, Chehroudi, etc. / AFRL (USA)
Blevins, Morris, etc. / NASA Marshall (USA)
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® Oefelein / DoE Sandia Lab. (USA)

* Bellan / NASA JPL (USA)

® Farmer / U. of Nevada (USA)

® Habiballah, et al. / ONERA (France)
® Yang / Penn State (USA)

full-scale
engine

injector
element




PENNSTATE Shadowgraph Results — LN2 into GN2
| Fhwy, Chehroudi et. al., AIAA 99-0206, AIAA 99-2489
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p,=339MPa, T, =126K, T,=300K, T,, =99~120K

u, =10~15m/s, D, =0.254 mm, Re=25,000~ 75,000

Pr=0.23 Pr=0.43 Pr=0.63 Pr=0.83 Pr=1.03

Pr=1.23 Pr=1.64 Pr=2.03 Pr=2.44 Pr=2.74
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p=2.0 MPa p=4.0 MPa Mayer et al.
AIAA 1996-2620
T, = 105K
Tens = 300 K
U, = 10m/s
b=1.0 MPa p=4.0 MPa D. = 1.9 mm

Thermodynamic non-idealities and transport anomalies
in transcritical regime
- rapid property variations - large density gradient

Diminishment of surface tension and enthalpy of vaporization

Pressure-dependent solubility

High Reynolds number
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* Pressure increases from 1 to 10? atm, Re, increases by 102

« Kolmogorov microscale  7/l~ Re3'* (decrease by 1.5 order)

 Taylor microscale A/l~ Re V2 (decrease by 1.0 order)
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» Sensible enthalpy: h(p,T)=h"(T)+Ah, (p,T)
* Internal energy: u(p,T)=u"(T)+Au, (p,T)
> SEESHEE e C,(p.T)=C, (1) +AC, . (p.T)
Ah,.,Au,,.,AC . =dense fluid corrections

h(T),u’(T), C]g (T'), = values in dilute-gas limit

Pressure-explicit type of EOS:

el p T Op
Ah, =j0 poa (aT)p dp+RT(Z-1)

_(le_T op
_J‘ ,02 _,02 (aT)P_dp
1 T(ap/aT)i
pexc__ _[ _2

p*(ep/dp),
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- compressibility factor * specific heat |

 dynamic viscosity * thermal conductivity




PENNSTATE Droplet Vaporization and Combustion
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* Liquid oxygen (LOX) droplet vaporization & combustion in hydrogen

and water 5<p,<300 atm
500 <T, <2500 K
50 <D,<300 pum

 Hydrocarbon droplet vaporization & combustion in air and oxygen
5<p,<200 atm
300 < T, <2500 K
100 <D,< 1000 pum

* Unsymmetrical dimethylhydrazine (UDMH) droplet vaporization and
decomposition combustion

1 <p, <180 atm
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Spherical Mode (100 atm, 0.2 m/s; t=610 us
i, p ( Hs)
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P =100 atm, T,_=1000 K, u_, =20 m/s, T,=100 K, d,=50 pm, H/R=8

t=8 us

t=90 us

911.0
821.9
732.9
643.9
554.8
465.8
376.8
287.7
198.7
155.0

912.4
824.8
737.2
649.6
562.1
474.5
386.9
299.3
211.7
155.0
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T ny = 105K
Tone = 300K
U N, = 10 m/s

P, =34-100NMPa, T, =300K,
T, = 120K ., D, = 0.254 mm,
w, =15 m/s, Re =20000 — 40000




rennSTate Shadowgraph Images of Cryogenic Nitrogen Injection
m Mayer et al. AIAA 2001-3275
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(p,.=6.0 MPa, T =300 K, u, = 49 m/s, T, = 132 K, D, = 2.2 mm)
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| Potential Core | Transition Region |  Self-Similar Region

|‘ rl <« r|‘

Din=0.254mm a
— i~
—— — i
uin=15m/s T a &

L/D, =40
» Kolmogorov microscale 7//~ Re3/* total grids
° Taylor microscale ﬁ“l‘/ltN Ret-l/Z 225)(75 X72 =S 1,215,000
- mean grid spacing in

3.4<p, <10.0 MPa and D, =0254 mm near injector region

3<A,<5 um A=35 pm




PENNSETATE Density Gradient Field
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(p,,.= 9.3 MPa, T_= 300 K, u,= 15 m/s, T, = 120 K, D, = 254 pm)|
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i, Time Evolution of Density Gradient Field
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(p,,.= 6.9 MPa, T_= 300 K, u,= 15 m/s, T, = 120 K, D, = 254 um) |

> 1IN
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m Snapshots of Density and Temperature Gradient Fields
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(p,.= 9.3MPa, T,_= 300K, u, = 15m/s, T, = 120K, t= 1.550ms, D, = 254pum) |

> 7In

x/D.

m
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(p,,.= 9.3 MPa, T_= 300 K, u,= 15 m/s, T, = 120 K, D, = 254 pm)|

2 In

pre-burst region burst region post-burst region
(density-stratified jet) (gaseous jet)

L1 2m/s Bl -2 m/s
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(p,.= 9.3 MPa, T_= 300 K, u,= 15 m/s, T, = 120 K, D, = 254 pm) |

| V.p|=2x10°
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i, Effect of Pressure on Density and Temperature Fields
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T, = 300K, u, = 15m/s, T, = 120K, D, = 254pm) |

> 7In
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i Power Spectral Densities of Velocity Fluctuations
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(p,= 9.3MPa, T_= 300K, u, = 15m/s, T, = 120K, D, = 254um) |

oL 10" ¢
g 102 é 102 ___________
B - > i
107 -~ yd=07 10° -—— y[d=0.7
-~ y/d=08 - y/d=038
10_4 ‘ ‘ R ‘ ‘ e -47 1 1 Lol | | I O |
10° 10° 10° 107 0 e
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Large density-gradient regions act like a solid wall that amplifies the
axial turbulent fluctuation but damps the radial one.
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Vortex Shedding Frequency
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(p,= 9.3MPa, T, = 300K, u, = 15m/s, T, = 120K, D, = 254um) |

0 25
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‘5‘0‘ | I

75

3.0

0.0

16.0
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i /18.6

0 20 40
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Jet flow instability analysis
St; = f,6,/U
where 0.044 < 5z, <0.0438

U=15 m/s

Momentum thickness
6,=0.02 mm

© U u
HO_ OUmax(l_U

)dy

max

choose
St ;= 0.046

then
f, =34500

£, =17250
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Approach

x u Density * Two-dimensional fluid jet instability

Annular Flow a

annular Flow at supercritical conditions.

 Unified treatment of real-fluid
thermodynamics and transport

|
| ﬁg phenomena.

Central flow b ‘

_—

Annular Flow a
B — e

» Disperse equation solved by Newton-

vz \ ‘ Ralpson method.
Conclusions 1.0
» As the density ratio increases, the spatial 0.8f
growth rate of the interfacial instability wave o
decreases. mmp Density stratification tends o
to stabilize the mixing layer. 04l

» Density stratification has little effect on the
frequency of the most unstable mode.

0.2F

0.0
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Issues
- Hydrogen

» Swirling jet dynamics at supercritical | \
| —

conditions.

o : : Swirl

* Flame stabilization mechanisms of swirl /X ) CZVIE
co-axial injector. K/ | Q

 Liquid rocket thrust chamber dynamics. T

Oxygen

N

Major Results

* Liquid film thickness and swirl cone angle.

 Detailed flow structures, including central
recirculation zone, surface instability, etc.

» Response of injector dynamics to external
forcing.




PENNSTATE

2y

LOX/Kerosene Preburner Swirl Injector

(Wu, et al., unpublished data, 2003)
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Kerosene

’

LOX | LOX
Retractive
p L~
A 1| chamber
h
| 1l
v v

Secondary injection Secondary injection

oxidizer-rich preburner injector

damaged inner centrifugal injector
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(p,=10.0 MPa, T =300 K, U= 30 m/s, T,.= 120 K, 6=30°, nitrogen ) |
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i, Time Evolution of Swirling Jet
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(p,,=10.0 MPa, T =300 K, u;,=30 m/s, T, .= 120 K, 6=30°, nitrogen ) |




PENNSTATE Disintegration of Swirling Water Jet
m (Inamura, Tamura and Sakamoto, JPP, 2003)
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Water Injection, L/D=11.67, K=1.0

* A hollow cone sheet forms around the injector exit.

» The conical sheet fluctuates vigorously and disintegrates into ligaments and droplets at the
sheet tip.

» The sheet breakup point approaches the injector as the liquid flow rate increases.




PENNSTATE

i, Theoretical Analysis of Swirl Injector (1/2)

w Department of Mechanical & Nuclear Engineering

( Inamura et al.
JPP, 2003)

x<x0|

d o T
EJAO Uu—u’)dy =

Y

ou

where 7, = OV, (5) y=0

and & =5.844/x /Re |

0=Uh, =I0§udy+Ui(h—5)‘ mm) /=1+3/10)5
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w Film Thickness at Post Exit
Xy <x<x,|

B =1429/{1+ A(x" —x,)}| A=1.682(v,/Q)

X, <X

B =0.02798(x" /Re"*)+C,| x; =0.0598Re

C, =1.429{1+ A(x, —x,)}—0.0279(x, /Re"*)

X, <X <X

k" =0.02798(x" /Re'*)+C,|

C, =1.143-0.02798(x; /Re"")|

x, = {(1.182-C,)/0.2893} Re'"*|




PENNSTATE

| iy, Limiting Extremes: 2) Diffusion Processes Dominate

w Department of Mechanical & Nuclear Engineering

« "High" Heating Rates '

- diminished intermolecular forces promote diffusion
processes prior to atomization

DENSE FLUID CORE
GAS POCKETS

- in#'ected jet vaporizes forming continous fluid in presence
of exceedingly large interfacial gradients

- diffusion flame resides within annular post wake
separating oxygen jet from outer hydrogen flow

FLAME FRONT




PENNSTATE Burning LOX Jet at Supercritical Pressure
m (Mayer, DLR, Germany; Tamura, NAL, Japan)
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(uox = 30 m/s, uy_ =300 m/s, Ty 5, =100 K, Ty, =300 K, p = 6 MPa)
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Combined OH emission and backlighting images (Ph.D thesis of Matthew Juniper)
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full-scale
engine

injector
element
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Thank You!
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(T,=300K, u,= 15 m/s, T, = 120 K, D, = 254 um)|




PENNSTATE  Effect of Pressure on Mean Velocity Distributions
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(T,=300 K, u, =15 m/s, T, = 120 K, D, = 254 um) |




PENNSTATE

2y

Frequency Spectral of Radial Velocity Oscillations
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pennSTate  LNormalized Density and Temperature Distributions
m along Radial Direction
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T,= 300K, u, = 15m/s, T, = 120K, D, = 254um) |

e Thermal diffusivity of nitrogen 1s relatively lower in the region
where the temperature 1s near the critical temperature.

* Most thermal energy transferred from the hot ambient gaseous nitrogen
to the cold jet 1s used to facilitate volume expansion.
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Pr=2.71 Challenges

Pr=2.74

High Pres.
Supercritical
Gas layers

» machine round-off errors at low speeds

e cigenvalue disparity

* time accuracy

» real-fluid behavior

* robust and efficient numerical treatment

Solutions

e pressure decomposition
» preconditioning method
* dual time-stepping integration technique

e partial mass/molar properties

e derivation of numerical Jacobians and
thermodynamic properties based on
fundamental thermodynamic theories
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(p,,.= 9.3MPa, T_= 300K, u, = 15m/s, T, = 120K, D, = 254um) |

 Due to the “near critical slow down”, the temperature of nitrogen
fluid increases slowly along the jet centerline.

* A self-similar density profile exist when x/d >15.
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